

Oral Presentation

HASPER: An Image Repository for Hand Shadow Puppet Recognition

Presented bySyed Rifat Raiyan

Co-authors

Zibran Zarif Amio, Sabbir Ahmed Department of Computer Science and Engineering Islamic University of Technology

Workshop on Cultural Continuity of Artists

Introduction

What is Hand Shadow Puppetry?

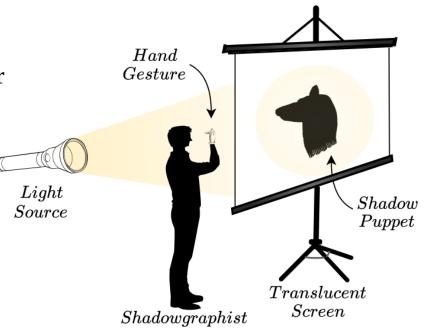
Definition:

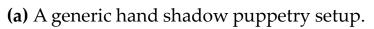
Hand Shadow Puppetry, also known as *shadowgraphy* or *ombromanie* is the art of performing a story or show using images made through the construction and manipulation of shadow figures or silhouettes, using one's hands, body, or props [1].

How does it work?

The puppeteer places his **hands between a light source and a translucent screen** to create shadows or silhouettes that resemble different **animals**.

- Also known as cinema in silhouette
- On the verge of extinction—UNESCO designated shadow puppetry an **endangered** Intangible Cultural Heritage [2] in 2011 (hence, needs **preservation!**)





Audience



Fig: Ombromanie in a nutshell.

Motivation

Our Inspiration to Pursue this Topic

- **Novelty factor:** To the best of our knowledge, **no** explicitly vision-related work or dataset exists on this topic of hand shadow puppet classification.
 - > Some of the closely related works will be mentioned in a bit...
- Gap: Frontier image generator models are very bad at ombromanie.
- Utility:
 - ✓ **Tool for teaching** performance art
 - ✓ **Recreational app** for kids
 - ✓ Enabling the development of sophisticated algorithms for automatic **recognition**, **classification**, or even **generation** of ombromanie performances
- **Nostalgia** incentivized by childhood memories during the load-shedding days.

ByteDance Seedream-4

Google Imagen-4 Fast

Google Gemini 2.5 Pro

xAI Grok 4

Stable Diffusion 3.5

Tencent Hunyuan 3

Related Work and Dataset

Research Literature on Shadow Puppetry

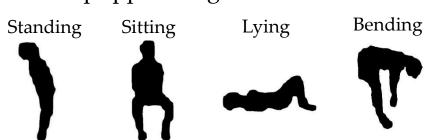
As mentioned before, we **haven't found any prominent work** on hand shadow puppet image classification.

Prominent Works: (closely related topics)

- In Robotics,
 - (Huang *et al.*)[3] introduced a framework that enables **robotic arms** to **perform hand shadow puppetry** by matching shape correspondences of input image.
- In Human-Computer Interaction,
 - (Zhang *et al.*)[4] worked on **emulating** the movements and body **gestures of a performer** on **Chinese shadow puppets** using Kinect sensor.
 - (Carr *et al.*)[5] built a real-time **Indonesian shadow puppet** storytelling application using the Microsoft Kinect sensor capable of **mimicking full-body actions** of user.
- In Computer Graphics,
 - (Huang *et al.*)[6] generated **3D models** of animals from shadow puppet images.

Dataset:

• Human Posture Silhouettes [7] - 4,800 binary images of silhouettes used for **human posture recognition**.

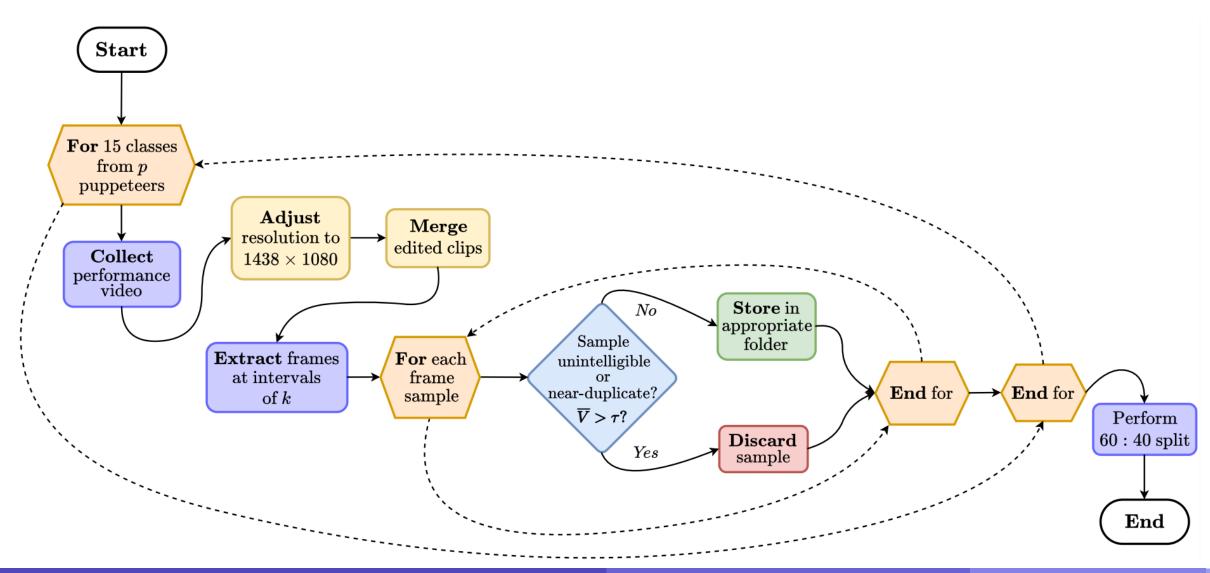


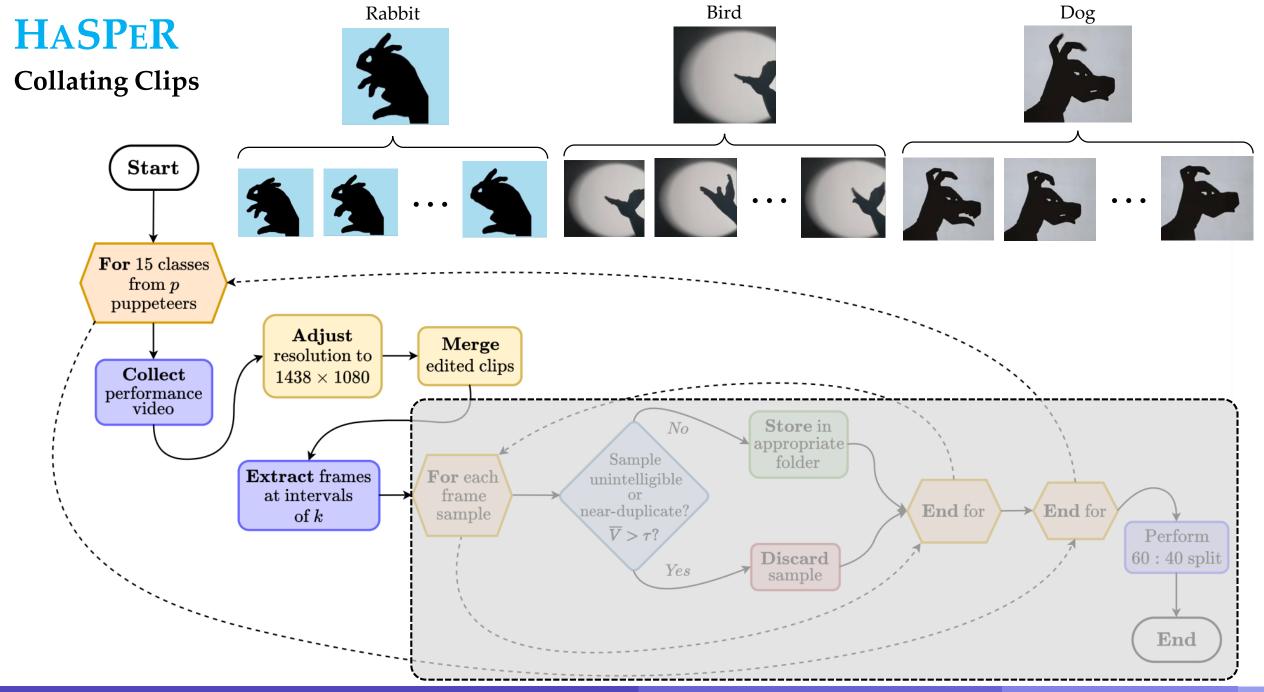
Our Work

What the project entails

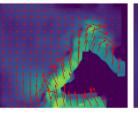
- **Data Collection** Gathered a total of **15,000 images** of hand shadow puppets.
 - ✓ From 68 professional hand shadow puppeteer clips and 90 amateur clips.
 - ✓ Across **15** classes.
- **Benchmarking** Established benchmarks for the dataset.
 - ✓ With **31** SoTA pre-trained Pytorch feature extractor architectures as baselines.
 - ✓ Found superiority of **skip-connected convolutional models** over **attention-based transformers models** in silhouette classification.
 - ✓ Experimented with feature fusion techniques
 - ➤ Topological features
 - ➤ Silhouette polygonization
- **Prototype Application** Developed a lightweight Android app using Flutter for real-time classification of hand shadow puppets from camera feeds

Dataset Construction Flowchart

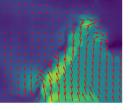


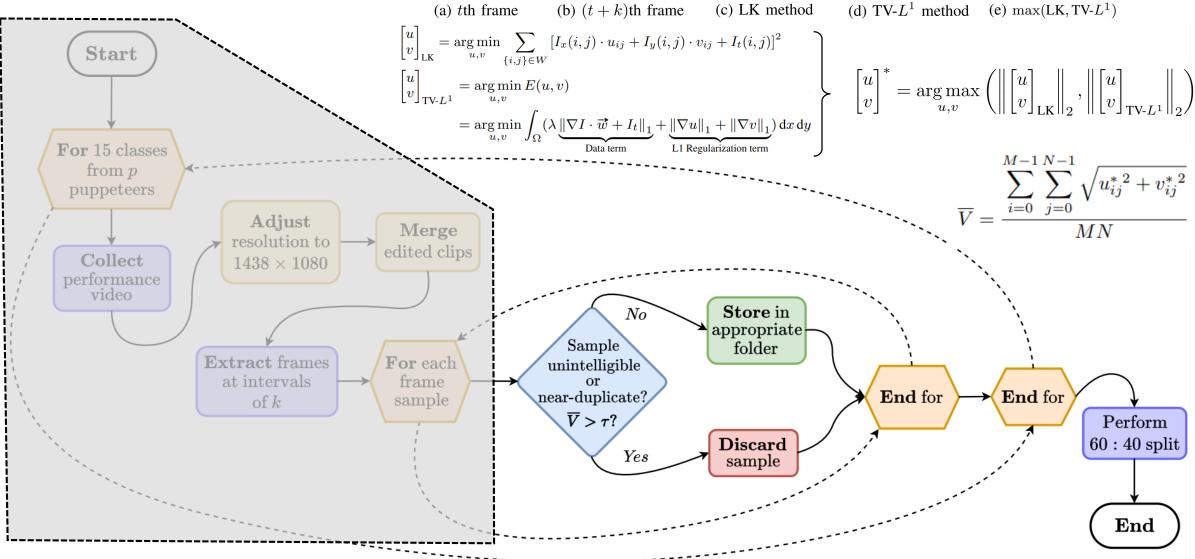


Optical Flow Estimation

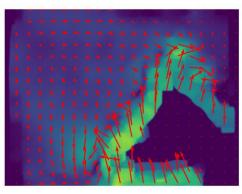


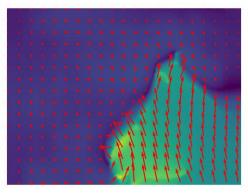


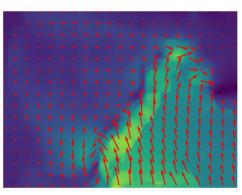




Optical Flow Estimation







(a) tth frame

(b)
$$(t+k)$$
th frame

(d) TV-
$$L^1$$
 method [9]

(b)
$$(t+k)$$
th frame (c) LK method [8] (d) TV- L^1 method (e) $\max(LK, TV-L^1)$

$$\begin{bmatrix} u \\ v \end{bmatrix}_{\text{LK}} = \underset{u,v}{\operatorname{arg\,min}} \sum_{\{i,j\} \in W} [I_x(i,j) \cdot u_{ij} + I_y(i,j) \cdot v_{ij} + I_t(i,j)]^2$$

$$\begin{bmatrix} u \\ v \end{bmatrix}_{\text{TV-}L^1} = \underset{u,v}{\operatorname{arg\,min}} E(u,v)$$

$$= \underset{u,v}{\operatorname{arg\,min}} \int_{\Omega} (\lambda \underbrace{\|\nabla I \cdot \overrightarrow{w} + I_t\|_1}_{\text{Data term}} + \underbrace{\|\nabla u\|_1 + \|\nabla v\|_1}_{\text{L1 Regularization term}}) \, \mathrm{d}x \, \mathrm{d}y$$

$$\begin{bmatrix} u \\ v \end{bmatrix}^* = \operatorname*{arg\,max}_{u,v} \left(\left\| \begin{bmatrix} u \\ v \end{bmatrix}_{\mathsf{LK}} \right\|_2, \left\| \begin{bmatrix} u \\ v \end{bmatrix}_{\mathsf{TV}\!-\!L^1} \right\|_2 \right)$$

$$\overline{V} = \frac{\sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \sqrt{u_{ij}^{*2} + v_{ij}^{*2}}}{MN}$$

Dataset Statistics

Silhouette	Cl	ips	Sample Distribution							
Class	Pro.	Nov.	Training	Validation	Total					
Bird	6	6	600	400	1000					
Chicken	2	6	600	400	1000					
Cow	2	6	600	400	1000					
Crab	4	6	600	400	1000					
Deer	6	6	600	400	1000 1000					
Dog	7	6	600	400						
Elephant	5	6	600	400	1000					
Horse	8	6	600	400	1000					
Llama	2	6	600	400						
Moose	3	6	600	400	1000					
Panther	2	6	600	400	1000 1000 1000 1000					
Rabbit	4	6	600	400						
Snail	4	6	600	400						
Snake	3	6	600	400						
Swan	10	6	600	400	1000					
Total	68	90	9000	6000	15000					
Total	1:	58	7000	0000	15000					

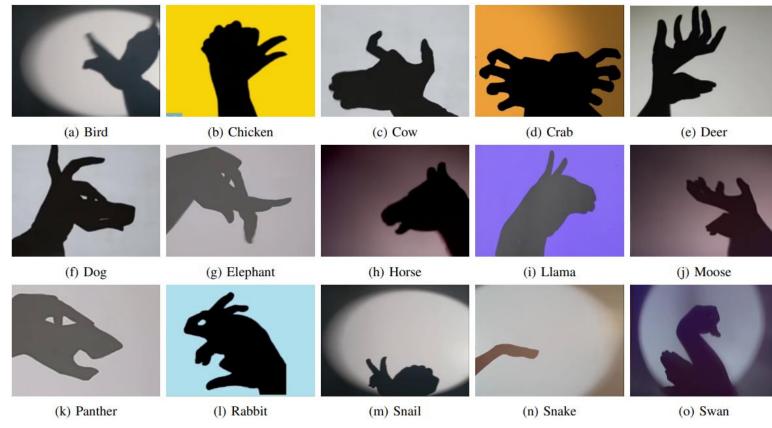


Fig: Statistical summary of HASPER.

Fig: Samples from each class of the dataset.

10

- For each class, professional $\approx 47.827 \pm 1.414\%$ and amateur $\approx 52.172 \pm 1.414\%$
- Proportions of professionally sourced samples belonging to the 'Llama' and 'Snake' classes (14% and 27.3% respectively) are slightly low due to a **scarcity** of performance clips.

Sample Diversity

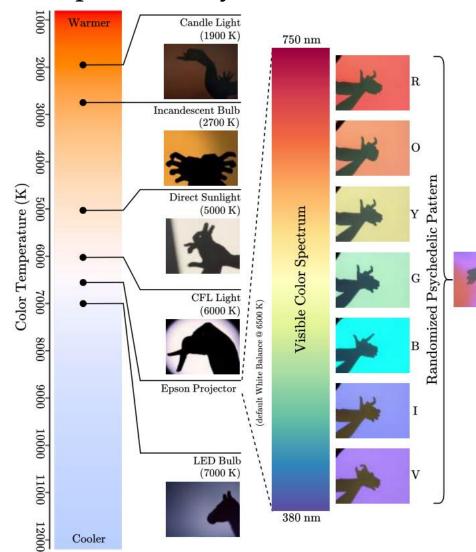


Fig: Light sources for background diversity.

(a) Sharp, high opacity

(b) Diffuse, low opacity

Fig: Samples with different silhouette properties.

Fig: 'Deer' samples with different artistic representations.

Cohort	hort Subgroup		Gender (M:F)	Age Range	Hand Length (cm)	Hand Width (cm			
Novice	Adults Minors	6	3:3	9 to 25	18.75 ± 1.55 14.23 ± 1.16	8.66 ± 0.77 6.73 ± 0.82			
Professional	_	14	12:2	N/A	N/A	N/A			

Benchmarking

Models and Modifications

- Feature Extractor Models 31 SoTA baselines pre-trained on ImageNet
 - ✓ With a vanilla fully-connected layer
 - ✓ With a simple adapter block
 - ✓ With feature fusions (concat)
 - ➤ Silhouette Polygonization [10]
 - Vertex coordinates
 - > Topological Features [11]
 - Betti curves
 - Morphological features
 - Local extrema coordinates
 - Euler characteristic
 - Gradient magnitude
 - Contours

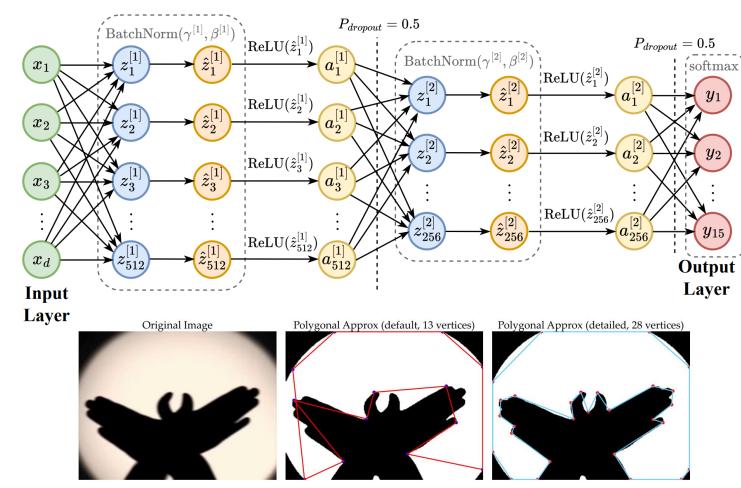


Fig: Polygonal approximations for a hand shadow puppet silhouette.

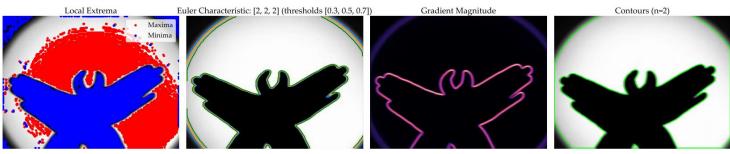


Fig: Topological features for a hand shadow puppet silhouette.

Tentative Benchmarking Results

Metrics:

- Top-*k* accuracy
- Precision
- Recall
- F1-score

Hyperparameters:

- $\alpha = 0.001$
- $\gamma_{momentum} = 0.9$
- $\gamma_{decay} = 0.1 \text{ per } 5$
- Epochs = 50

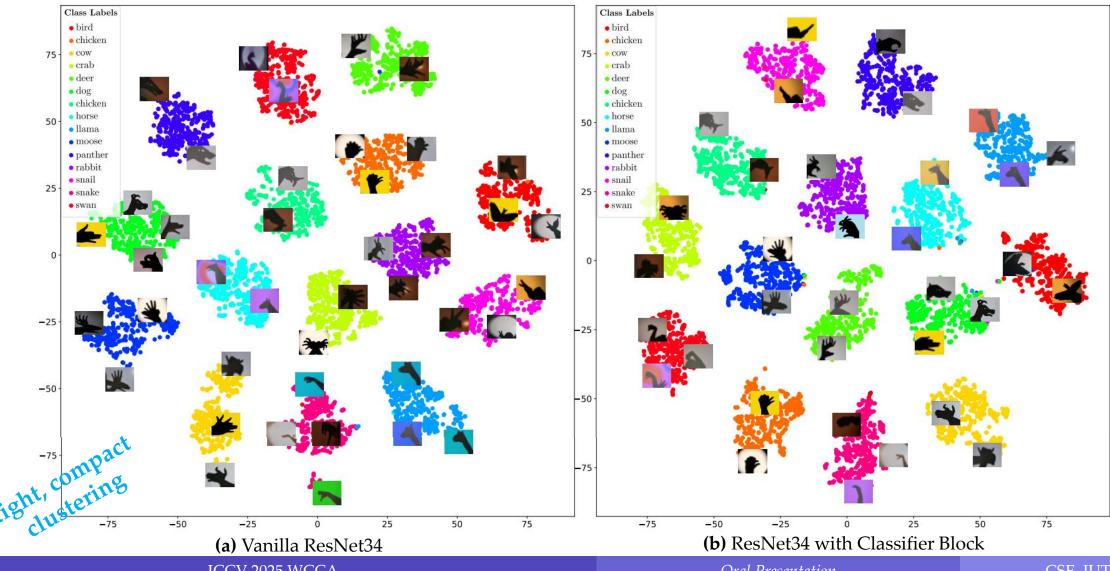
			Performance Metrics											
Models	Params.	Vanilla									sifier Block			
Models	1 at attis.	Top-k Accuracy (%)		Precision	Recall	F1-score	Т	op-k Accuracy (%	6)	Precision	Recall	F1-score		
		Top-1	Top-2	Top- 3	1 recision	Recair	r r-score	Top-1	Top-2	Top-3	Trecision	Recan	T1-score	
SHUFFLENETV2X10 [40]	2.3M	61.73	78.41	86.10	0.6559	0.6173	0.5970	88.73	93.98	96.10	0.8995	0.8873	0.8853	
ViTB16 [41]	86.6M	69.71	77.60	83.28	0.7276	0.6972	0.6969	68.88	76.65	81.36	0.7192	0.6868	0.6851	
ViTL32 [41]	306.5M	85.10	91.56	94.48	0.8720	0.8510	0.8509	84.71	91.80	94.08	0.8632	0.8472	0.8465	
ALEXNET [11]	61.1M	87.01	93.61	95.46	0.8840	0.8702	0.8708	88.18	92.58	94.80	0.8887	0.8818	0.8809	
SQUEEZENET1_1 [42]	1.2M	87.56	92.45	94.15	0.8880	0.8757	0.8744	86.21	92.48	94.65	0.8754	0.8622	0.8637	
MOBILENETV3SMALL [43]	2.5M	89.48	94.31	95.76	0.9038	0.8948	0.8942	89.85	94.35	96.48	0.9082	0.8985	0.8976	
SWINB [44]	87.8M	90.50	95.38	97.40	0.9128	0.9050	0.9042	90.20	95.40	97.08	0.9097	0.902	0.9006	
GOOGLENET [45]	6.6M	90.73	94.65	95.70	0.9105	0.9073	0.9059	92.18	95.65	96.58	0.9283	0.9218	0.9206	
RESNET18 [46]	11.7M	90.91	95.28	96.60	0.9176	0.9092	0.9069	91.25	95.43	97.05	0.9229	0.9125	0.9119	
MOBILENETV3LARGE [43]	5.5M	91.20	94.48	95.98	0.9185	0.9120	0.9110	90.40	94.53	95.26	0.9147	0.9040	0.9024	
CONVNEXT [47]	88.6M	91.46	96.33	98.05	0.9220	0.9147	0.9140	92.55	96.36	97.96	0.9306	0.9255	0.9246 0.9144	
SWINV2B [48]	87.9M	91.58	96.25	97.61	0.9210	0.9158	0.9151	91.48	96.00	97.55	0.9209	0.9148		
VGG16 [12]	138.4M	91.61	95.08	96.65	0.9248	0.9162	0.9168	91.00	95.21	96.45	0.9235	0.9100	0.9119	
MNASNET13 [49]	6.3M	91.66	95.65	97.01	0.9240	0.9167	0.9149	91.45	95.86	97.26	0.9231	0.9145	0.9133	
CONVNEXTLARGE [47]	197.8M	91.88	95.90	97.70	0.9254	0.9188	0.9181	88.00	94.70	96.56	0.8942	0.8800	0.8782	
EFFICIENTNETB0 [50]	5.3M	91.93	95.26	96.71	0.9257	0.9193	0.9178	90.40	93.75	95.10	0.9131	0.9040	0.9022	
MAXVIT [51]	30.9M	92.01	96.50	97.81	0.9268	0.9202	0.9214	92.08	95.98	97.36	0.9320	0.9208	0.9237	
EFFICIENTNETV2S [52]	21.5M	92.31	95.75 95.13	96.76 96.10	0.9375 0.9354	0.9232 0.9237	0.9245	94.45	97.35	98.30 96.15	0.9498 0.9296	0.9445 0.9180	0.9438 0.9187	
VGG19 [12]	143.7M	92.36					0.9242	91.80	95.06					
MOBILENETV2 [53]	3.5M	92.38	94.98	96.05	0.9303	0.9238	0.9233	92.31	95.38	96.91	0.9311	0.9232	0.9225	
WIDERESNET50_2 [54]	68.9M	92.46	96.28	97.28	0.9331	0.9247	0.9235	93.35	95.73	97.15	0.9421	0.9335	0.9330	
RESNET50 [46]	25.6M	92.58	95.56	96.75	0.9332	0.9258	0.9252	93.08	96.48	97.20	0.9363	0.9308	0.9299	
REGNETX32GF [55]	107.8M	92.86	95.71	96.93	0.9348	0.9287	0.9269	92.91	95.71	96.95	0.9366	0.9292	0.9282	
DENSENET121 [56]	8.0M	92.93	95.75	96.88	0.9367	0.9293	0.9282	92.95	95.51	96.56	0.9360	0.9295	0.9285	
RESNEXT101_32X8D [57]	88.8M	93.00	96.41	97.23	0.9364	0.9310	0.9303	94.20	96.61	97.58	0.9520	0.9420	0.9423	
WIDERESNET101_2 [54]	126.9M	93.36	95.81	96.90	0.9423	0.9337	0.9332	92.73	96.35	97.63	0.9337	0.9273	0.9267	
INCEPTIONV3 [58]	27.2M	93.50	96.48	97.35	0.9401	0.9350	0.9338	93.71	96.36	97.06	0.9446	0.9372	0.9371	
DENSENET201 [56]	20.0M	93.56	95.78	96.73	0.9450	0.9357	0.9353	94.43	97.00	97.61	0.9492	0.9443	0.9442	
RESNET101 [46]	44.5M	93.81	96.23	97.71	0.9432	0.9382	0.9406	93.23	96.93	98.13	0.9386	0.9323	0.9321	
RESNET152 [46]	60.2M	94.06	97.06	98.05	0.9447	0.9407	0.9394	93.05	96.73	97.48	0.9374	0.9305	0.9297	
RESNET34 [46]	21.8M	94.97	97.23	98.23	0.9516	0.9497	0.9491	91.98	95.95	97.20	0.9266	0.9198	0.9189	
RESNET34 w/ Silhouette Polygonization	21.8M	92.72	96.41	97.51	0.9328	0.9272	0.9257	92.95 (+1.05%)	95.75	96.61	0.9352 (+0.93%)	0.9295 (+1.05%)	0.9283 (+1.02%)	
RESNET34 w/ Topological Features	21.8M	93.72	96.43	97.78	0.9432	0.9372	0.9359	94.05 (+2.25%)	96.45 (+0.52%)	97.53 (+0.34%)	0.9476 (+2.27%)	0.9405 (+2.25%)	0.9401 (+2.31%)	

ICCV 2025 WCCA Oral Presentation CSE, IUT

		Performance Metrics													
Models	Params.	Vanilla						w/ Classifier Block							
Models	rarams.	Top-k Accuracy (%)		ey (%)	Dungisian	Docall	F1-score	Top-k Accuracy (%)			Precision	Recall	F1-score		
		Top-1	Top-2	Top-3	Precision	Kecan	r 1-score	Top-1	Top-2	Top-3	Frecision	recision Recail			
SHUFFLENETV2X10 [40]	2.3M	61.73	78.41	86.10	0.6559	0.6173	0.5970	88.73	93.98	96.10	0.8995	0.8873	0.8853		
ViTB16 [41]	86.6M	69.71	77.60	83.28	0.7276	0.6972	0.6969	68.88	76.65	81.36	0.7192	0.6868	0.6851		
ViTL32 [41]	306.5M	85.10	91.56	94.48	0.8720	0.8510	0.8509	84.71	91.80	94.08	0.8632	0.8472	0.8465		
ALEXNET [11]	61.1M	87.01	93.61	95.46	0.8840	0.8702	0.8708	88.18	92.58	94.80	0.8887	0.8818	0.8809		
SQUEEZENET1_1 [42]	1.2M	87.56	92.45	94.15	0.8880	0.8757	0.8744	86.21	92.48	94.65	0.8754	0.8622	0.8637		
MOBILENETV3SMALL [43]	2.5M	89.48	94.31	95.76	0.9038	0.8948	0.8942	89.85	94.35	96.48	0.9082	0.8985	0.8976		
SWINB [44]	87.8M	90.50	95.38	97.40	0.9128	0.9050	0.9042	90.20	95.40	97.08	0.9097	0.902	0.9006		
GOOGLENET [45]	6.6M	90.73	94.65	95.70	0.9105	0.9073	0.9059	92.18	95.65	96.58	0.9283	0.9218	0.9206		
RESNET18 [46]	11.7M	90.91	95.28	96.60	0.9176	0.9092	0.9069	91.25	95.43	97.05	0.9229	0.9125	0.9119		
MOBILENETV3LARGE [43]	5.5M	91.20	94.48	95.98	0.9185	0.9120	0.9110	90.40	94.53	95.26	0.9147	0.9040	0.9024		
CONVNEXT [47]	88.6M	91.46	96.33	98.05	0.9220	0.9147	0.9140	92.55	96.36	97.96	0.9306	0.9255	0.9246		
SWINV2B [48]	87.9M	91.58	96.25	97.61	0.9210	0.9158	0.9151	91.48	96.00	97.55	0.9209	0.9148	0.9144		
VGG16 [12]	138.4M	91.61	95.08	96.65	0.9248	0.9162	0.9168	91.00	95.21	96.45	0.9235	0.9100	0.9119		
MNASNET13 [49]	6.3M	91.66	95.65	97.01	0.9240	0.9167	0.9149	91.45	95.86	97.26	0.9231	0.9145	0.9133		
CONVNEXTLARGE [47]	197.8M	91.88	95.90	97.70	0.9254	0.9188	0.9181	88.00	94.70	96.56	0.8942	0.8800	0.8782		
EFFICIENTNETB0 [50]	5.3M	91.93	95.26	96.71	0.9257	0.9193	0.9178	90.40	93.75	95.10	0.9131	0.9040	0.9022		
MAXVIT [51]	30.9M	92.01	96.50	97.81	0.9268	0.9202	0.9214	92.08	95.98	97.36	0.9320	0.9208	0.9237		
EFFICIENTNETV2S [52]	21.5M	92.31	95.75	96.76	0.9375	0.9232	0.9245	94.45	97.35	98.30	0.9498	0.9445	0.9438		
VGG19 [12]	143.7M	92.36	95.13	96.10	0.9354	0.9237	0.9242	91.80	95.06	96.15	0.9296	0.9180	0.9187		
MOBILENETV2 [53]	3.5M	92.38	94.98	96.05	0.9303	0.9238	0.9233	92.31	95.38	96.91	0.9311	0.9232	0.9225		
WIDERESNET50_2 [54]	68.9M	92.46	96.28	97.28	0.9331	0.9247	0.9235	93.35	95.73	97.15	0.9421	0.9335	0.9330		
RESNET50 [46]	25.6M	92.58	95.56	96.75	0.9332	0.9258	0.9252	93.08	96.48	97.20	0.9363	0.9308	0.9299		
REGNETX32GF [55]	107.8M	92.86	95.71	96.93	0.9348	0.9287	0.9269	92.91	95.71	96.95	0.9366	0.9292	0.9282		
DENSENET121 [56]	8.0M	92.93	95.75	96.88	0.9367	0.9293	0.9282	92.95	95.51	96.56	0.9360	0.9295	0.9285		
RESNEXT101_32X8D [57]	88.8M	93.00	96.41	97.23	0.9364	0.9310	0.9303	94.20	96.61	97.58	0.9520	0.9420	0.9423		
WIDERESNET101_2 [54]	126.9M	93.36	95.81	96.90	0.9423	0.9337	0.9332	92.73	96.35	97.63	0.9337	0.9273	0.9267		
INCEPTIONV3 [58]	27.2M	93.50	96.48	97.35	0.9401	0.9350	0.9338	93.71	96.36	97.06	0.9446	0.9372	0.9371		
DENSENET201 [56]	20.0M	93.56	95.78	96.73	0.9450	0.9357	0.9353	94.43	97.00	97.61	0.9492	0.9443	0.9442		
RESNET101 [46]	44.5M	93.81	96.23	97.71	0.9432	0.9382	0.9406	93.23	96.93	98.13	0.9386	0.9323	0.9321		
RESNET152 [46]	60.2M	94.06	97.06	98.05	0.9447	0.9407	0.9394	93.05	96.73	97.48	0.9374	0.9305	0.9297		
RESNET34 [46]	21.8M	94.97	97.23	98.23	0.9516	0.9497	0.9491	91.98	95.95	97.20	0.9266	0.9198	0.9189		
RESNET34 w/ Silhouette Polygonization	21.8M	92.72	96.41	97.51	0.9328	0.9272	0.9257	92.95 (+1.05%)	95.75	96.61	0.9352 (+0.93%)	0.9295 (+1.05%)	0.9283 (+1.02%)		
RESNET34 w/ Topological Features	21.8M	93.72	96.43	97.78	0.9432	0.9372	0.9359	94.05 (+2.25%)	96.45 (+0.52%)	97.53 (+0.34%)	0.9476 (+2.27%)	0.9405 (+2.25%)	0.9401 (+2.31%)		

Qualitative Analysis

Feature Space Visualization: *t*-SNE (*t*-Stochastic Neighbor Embedding)



ICCV 2025 WCCA Oral Presentation CSE, IUT

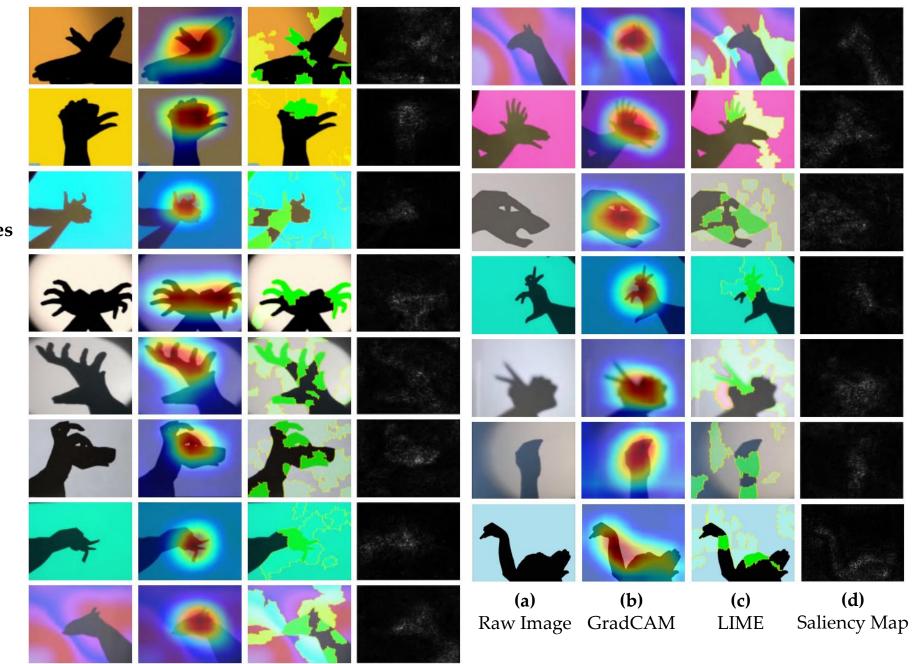
Qualitative Analysis

Explainable AI (xAI):

- GradCAM [12]
- LIME [13]
- Saliency Map [14]

Common-sense distinguishing features

- ✓ **Bird** wingspan, beak
- ✓ **Chicken** gallinaceous comb
- ✓ Cow horn, concave head
- ✓ **Crab** appendages
- ✓ **Deer** horns
- ✓ Dog slanted head, ears
- ✓ **Elephant** tusks, trunk
- ✓ **Moose** upright horns
- ✓ Panther eyes and ears
- ✓ **Rabbit** small hands and mouth
- ✓ **Snail** shell, antennae, etc.



16

Error Analysis

Probable reasons for misclassifications:

- High Inter-Class Similarity
- Significant Intra-Class Variation
- Ambiguity of shape present in mid-action frames
- Poor lighting and ineptitude of the amateur child puppeteers

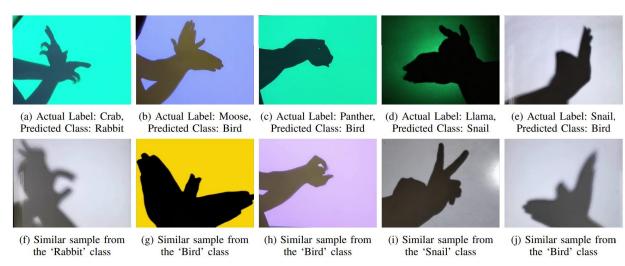


Fig: Misclassified samples with visually similar samples of the predicted class.

Bird	386	0	6	0	0	0	0	0	0	8	0	0	0	0	0
Chicken	2	396	1	0	0	0	0	0	0	0	0	0	0	1	0
Cow	1	0	378	4	0	0	4	0	1	3	2	0	6	0	1
Crab	18	1	1	323	0	2	0	0	2	23	0	30	0	0	0
Deer	0	0	3	0	389	0	0	0	0	8	0	0	0	0	0
Dog	2	0	0	0	0	391	0	1	4	0	0	0	2	0	0
Labels Horse Elephant	3	0	0	0	0	0	395	0	0	0	0	0	2	0	0
	0	0	1	0	0	4	0	395	0	0	0	0	0	0	0
L lama	0	0	0	0	0	0	0	0	388	0	0	0	12	0	0
Moose	6	1	0	4	2	0	0	0	0	387	0	0	0	0	0
Rabbit Panther Moose	17	0	0	0	0	5	11	22	6	0	322	1	0	15	1
Rabbit	1	1	0	4	0	0	1	0	0	0	0	390	2	0	1
Snail	20	3	10	0	0	3	0	0	0	1	1	0	362	0	0
Snake	0	0	0	0	0	0	0	0	0	0	0	0	0	399	1
Swan	0	0	0	1	0	2	0	0	0	0	0	0	0	0	397
	Bird	Chicken	Cow	Crab	Deer	Dog	Elephant Predi		Llama Abels	Moose	Panther	Rabbit	Snail	Snake	Swan

Fig: Confusion Matrix of vanilla ResNet34.

17

Application: Digitization of Hand Shadow Puppetry

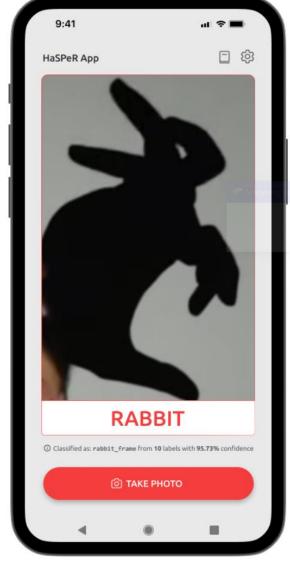
Mobile App Prototype

Objective: To create a real-time, interactive application that brings hand shadow puppetry to life using a lightweight trained model like MobileNetV2.

• Memory footprint: 29 MB

• Inference time: 880 μ s

Snapdragon 8 Gen 2 of Samsung Galaxy S23



18

Fig: Android application for shadow puppet recognition.

Limitations

Scopes of Improvement

- Our work still has some ground to build upon:
 - ✓ Introducing samples with **more diversified** hand/palm/wrist structures.
 - ✓ Exploring **two different approaches** to classify RGB images of the hand
 - ➤ Feature Extraction after **RGB to grayscale silhouette conversion** (using pre-processing DIP techniques).
 - ➤ Utilizing **depth information** and coordinates of **hand landmarks** as features (using MediaPipe).
 - ✓ Yields **high accuracy in Sign Language Recognition** tasks, as per recently published research works.
 - ✓ Working on image/video generation.

ida de la como de la c

Shadow

RGB Input Image of puppeteer's hand

diapipe

Hand Keypoints (Depth Info.)

19

Conclusion

Summary of our contributions

- We introduce **HASPER** (<u>Hand Shadow Puppet Image Repository</u>), a novel, curated dataset of 15,000 images sourced from 68 professional and 90 amateur clips.
- We ensure diversity through variations in poses, orientations, background lighting, and silhouette motion via **optical flow estimation**.
- We evaluate **31 state-of-the-art pretrained image classification models** on HASPER to establish integrity baselines.
- We thoroughly assess **ResNet34**'s feature representations, feature fusions, interpretability, explainability, and classification errors.
- We develop a **lightweight Android app** using Flutter for real-time classification of hand shadow puppets from camera feeds, showcasing potential for digitized ombromanie learning tools.
- Our core finding is: Skip-connected Convolutional models > Attention-based Transformers models.
 (skip-connections help preserve low-level edge and contour information through identity mappings)

References

Works cited in this presentation

- [1] A. Almoznino and Y. Pinas, "The art of hand shadows," pp. 1–64, 2002.
- [2] F. Lu, F. Tian, Y. Jiang, X. Cao, W. Luo, G. Li, X. Zhang, G. Dai, and H. Wang, "Shadowstory: creative and collaborative digital storytelling inspired by cultural heritage," in *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems*, ser. CHI '11. Vancouver BC, Canada: ACM, May 2011, p. 1919–1928.
- [3] Z. Huang, V. K. Madaram, S. Albadrani, and T. V. Nguyen, "Shadow puppetry with robotic arms," in *Proceedings of the 25th ACM international conference on Multimedia*, pp. 1251–1252, 2017.
- [4] H. Zhang, Y. Song, Z. Chen, J. Cai, and K. Lu, "Chinese shadow puppetry with an interactive interface using the kinect sensor," in *Computer Vision–ECCV* 2012. Workshops and Demonstrations: Florence, Italy, October 7-13, 2012, Proceedings, Part I 12, pp. 352–361, Springer, 2012.
- [5] B. M. Carr and G. J. Brown, "Shadow puppetry using the kinect," 2014.
- [6] M. Huang, S. Mehrotra, and F. Sparacino, "Shadow vision," 1999.
- [7] https://www.kaggle.com/datasets/deepshah16/silhouettes-of-human-posture
- [8] B. D. Lucas and T. Kanade, "An iterative image registration technique with an application to stereo vision," in *Proceedings of the 7th International Joint Conference on Artificial Intelligence*, vol. 2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1981, pp. 674–679.
- [9] C. Zach, T. Pock, and H. Bischof, A Duality Based Approach for Realtime TV-L 1 Optical Flow. *Springer Berlin Heidelberg*, p. 214–223. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-74936-3 22

References

Works cited in this presentation

[10] D. H. Douglas and T. K. Peucker, "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature," *Cartographica: The International Journal for Geographic Information and Geovisualization*, vol. 10, no. 2, pp. 112–122, 1973. [Online]. Available: https://doi.org/10.3138/FM57-6770-U75U-7727

[11] H. Blum, "A Transformation for Extracting New Descriptors of Shape," in *Models for the Perception of Speech and Visual Form*, W. Wathen-Dunn, Ed. Cambridge, MA: The MIT Press, 1967, pp. 362–380.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-cam: Visual explanations from deep networks via gradient-based localization," in 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, Oct. 2017, p. 618–626.

[13] M. Ribeiro, S. Singh, and C. Guestrin, ""why should I trust you?": Explaining the predictions of any classifier," in *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations*, J. DeNero, M. Finlayson, and S. Reddy, Eds. San Diego, California: Association for Computational Linguistics, Jun. 2016, pp. 97–101.

[14] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep inside convolutional networks: visualising image classification models and saliency maps," in *Proceedings of the ICLR*, 2014.

THANK YOU FOR LISTENING.

GET IN TOUCH:

EMAIL — {rifatraiyan, zibranzarif, sabbirahmed}@iut-dhaka.edu
TWITTER — @realRifatRaiyan

HASPER

